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LETTER TO THE EDITOR 

Pauli susceptibility at a Peierls transition 

P Chandra 
Corporate Research Science Laboratories, Exxon Research and Engineering Company, 
Annandale, NJ 08801, USA 

Received 30 March 1989 

Abstract. Using general arguments borrowed from magnetism, we show that it is short-range 
order parameter fluctuations close to T, that lead to the observed behaviour ofX at a Peierls 
transition; in the quasi-static approximation dX/dT should vary as the lattice specific heat. 
The addition of impurities produces rounding of the dX/dT cusp when the true phase 
transition is destroyed by disorder. The theory compares favourably with experiment. 

The observation of a sharp cusp in the temperature derivative of the static magnetic 
susceptibility dX/d Tis often interpreted as a clear signature of a continuous structural 
phase transition. Such behaviour is particularly prominent in low-dimensional com- 
pounds undergoing a Peierls transition, where there is a large change in the density of 
states. Despite the fact that this dX/d Tmeasurement is a standard experimental method 
for determining T, for charge density wave compounds, the behaviour of the static 
magnetic susceptibility is not well understood theoretically, particularly close to T, 111, 
In the simplest model the electrons are treated as a non-interacting electron gas, and 
then x is simply proportional to the density of states at the Fermi energy. Charge 
conservation arguments imply that ionic density fluctuations close to T, lead to variation 
in the electronic density of states, and it is therefore these effects which we would like 
to calculate. 

Historically the Peierls transition has been treated using a soft-phonon picture; 
however, because of the large anharmonicities present for T = T,, diagrammatic cal- 
culations with phonon basis states become very complicated. An alternative view is to 
consider the formation of a pseudo-gap above T, due to the presence of large critical 
fluctuations. This approach is certainly not new, and was used in the study of magnetic 
materials by De Gennes and Friedel [2], and by Fisher and Langer (FL) [ 3 ] .  More recently 
it has been applied to the Peierls transition by Lee, Rice and Anderson (LRA) [4]. Using 
critical slowing-down arguments we can treat the fluctuations as quasi-static, and can 
therefore consider electron-ion scattering in the elastic limit near T,. Strictly speaking 
only electron-ion energy transfers of the order of the gap will significantly alter our 
results, and so the elastic scattering assumption seems acceptable on physical grounds. 

The problem of interest has therefore been reduced to that of an electron scattering 
from a single-body static potential V(r) that fluctuates in momentum space which, for 
T > T,, satisfies 

(V,) = 0 ( l a )  

(VqVq' )  = qd(v;)dq,-q, (16) 
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where Vq is the Fourier transform of V ( Y )  and S ( q ) ,  the structure factor, is strongly 
peaked at q = 0 (Q = kF). For T < T, the order parameter (V,) is finite, and there is an 
additional delta-function contribution to ( lb) .  Because the Peierls transition has a small 
critical region, (e.g. t, - (AeF)4  - for quasi-one-dimensional blue bronze) [I, 51 
we shall model S ( q )  by a Lorentzian centred at the nesting vector. The correct nor- 
malisation for S ( q )  is important so as to ensure that the integrated structure factor has a 
smooth temperature dependence. We use the Fisher-Langer argument, borrowed from 
magnetism, to contend that the electronic mean free path I will provide a lower cut-off 
to the width of the structure factor. More physically, the electrons will never sample 
ionic fluctuations with wavelengths longer than their own mean free path, and therefore 
electronic properties near T, will be dominated by short-length-scale ionic behaviour. 
We then expect x to have an energy-like appearance, and in particular dX/d Tshould be 
proportional to the lattice specific heat [6]t. 

For a non-interacting electron gas scattering from a static potential the spin sus- 
ceptibility is simply proportional to the thermally averaged density of states D ( o ) .  We 
solve for D ( w )  using a standard self-consistent Born approximation, and calculate the 
full Green function using Dyson’s equation. Symmetry-breaking self-energy diagrams 
must be calculated to all orders to produce a gap at the transition. Studies of disordered 
systems indicate that crossed diagram contributions do not significantly affect the density 
of states, and therefore these terms are neglected in this calculation. Such diagrams 
would, however, be important for the study of transport properties. 

If we only retain coupling to nearby degenerate states and use the self-consistent 
Born approximation described above, Dyson’s equation becomes 

for T > T, where ~ ( k )  - ~ ( k  - Q) and 1/r = vF/lin the standard relaxation time approxi- 
mation. Below Tc both order parameter fluctuations and growth contribute to x and we 
calculate G in ( 2 )  making the simple transformation 

S(Q)(Vi> * S(Q)(V$ - (VQ>’> + S ( Q  = ~ ~ F ) ( V Q ) * .  (3) 
Here we take S ( Q )  to be a normalised Ornstein-Zernike distribution centred at Q - 2kF 
with width K where K is the inverse correlation length 5. This choice of structure factor 
is inherent to a Gaussian model; in short, here we treat thermal fluctuations in the 
harmonic approximation. 

For the highly anisotropic systems of interest we perform our calculation with a 
model Fermi surface of cylindrical symmetry. This Peierls gap will occur in the perfectly 
nested regions of this surface where there are planes parallel in momentum space. We 
model the ionic structure factor S ( q )  by a normalised Ornstein-Zernike function 

where I (  and I refer to the cylindrical axes, K is the inverse correlation length, a is a 
dimensionless anisotropic parameter, N is a normalisation constant and q = 0 cor- 
responds to a nesting vector Q = 2kF. A cut-off qo reflects the degree of Fermi surface 
nesting and will be of order the inverse lattice spacing where details vary according to 
band structure. Because the Lorentzian structure factor is only valid for long-wavelength 
fluctuations, an additional cut-off qc must be introduced to ensure its proper nor- 
malisation. If we define q* = min(qc, qo)  then if aq* /K  -=S 1 the electronic system will be 
i dX/dT - c,, has been conjectured in TTF-TCNQ for somewhat different reasons in [6].  The authors of [6] do 
not support this statement with a detailed calculation, and in particular do not discuss mean-free-path effects 
which play a central role, via the Fisher-Langer argument, in our present treatment. 

S(q) - N/(qi + a2q: + K 2 )  (4) 
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Figure 1. Inverse correlation lengths as defined in the text 

quasi-one dimensional. 
If the anisotropy is very large, as in the case of the quasi-lr, Peierls system KO ,Moo3 

(aq* - [7], then unless we are very close to the transition we may assume a one- 
dimensional electronic band structure. In this case the integral over Q in (2) for T > T, 
leads to 

G-l (k ,  U) = G i l ( k ,  U )  - (V&)[G,l(k - 2 k ~ ,  U) + ~UFE-'] 

f - ' ( t )  = p ( t )  + I - 1  

( 5 )  

(6) 

where 

Equation (6) embodies the crucial fact that the electronicmean free path 1, which remains 
fixed through the Peierls transition, provides a lower cut-off to the wavelength of density 
fluctuations that scatter electrons; this argument was first pointed out by Fisher and 
Langer in the context of transport properties at a magnetic critical point. The density of 
states, and thus x, is then calculated from G in (5) by the standard method. 

Figure 1 shows the temperature dependence of the inverse correlation lengths used in 
[4] and the present theory. LRA consider a one-dimensional system with finite correlation 
length for T > 0, where E( T )  is determined using transfer matrix techniques. In figure 
2 we make a comparison between the LRA approach and the present theory, and 
experimental results on blue bronze (K,,,MoO3). Though LRA describe several features 
of x near a Peierls transition-in particular its smooth form through T, and the effect of 
the density of states gap-they only treat one-dimensional non-critical fluctuations. 
Close to T, this is not adequate, and therefore in our theory we include Gaussian 
critical fluctuations in all three dimensions through our structure factor S(q). In all our 
theoretical curves presented here x ~ < ~  and x ~ , ~  are matched at t = 0 ( T  = T J ;  this is 
reasonable since, by the Fisher-Langer argument, x is proportional to the lattice energy 
and therefore must be a smooth function of temperature. In figure2 we use 
l f o , , / C ~  = 2.1 and Eo,,$ = 1 where lfoeff - huF/Aeff and go - huF/A  (where Aeff - 
v(V$) and A - (VQ)2); this is in good agreement with the experimental values A(0) = 
565 K [l] ,  Aeff = 282 K [l] and z = 6.8 x s [7]. We note that for IS  l f O e i f  the 
calculated x will assume a form similar to that of LRA. 

We can also extend the present theory to describe x near T, for higher-dimensional 
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Figure 2. x for Ko ,,MOO,: theory versus experiment. LRA and experimental points are taken 
from [l]; here T: is the three-dimensional LRA ordering temperature and T,  is the transition 
of the present theory. Full curve: present theory; broken curve: LRA theory. Inset: dX/dT 
for K,,30M~l-,W,03. Data points are taken from [7]. A, x = 0; 0,  x = 0.004; +, x = 0.01. 

Peierls compounds. Structure factor normalisation is necessary to prevent divergence 
of the electronic self-energy E integrals. The density of states integrals must be performed 
numerically, though we can determine leading-order behaviour analytically as T-+ T, 
by considering the limits C U ~ * / K  %- 1 and K+ 0. We find that for dimensions d = 1, 2 
and 3 

dX/dt - (-sgn t)lt11'2 t+O ( 7 )  
where tis the reduced temperature. Equation (7) indicates that for this particular Fermi 
surface geometry it is only coherence length and mean-free-path factors that affect 
dX/d T near T, as a function of dimension. According to the Fisher-Langer argument, 
dX/d T should be proportional to c,; this is indeed the case in (7) for the Gaussian model 
(a = 0.5). Theoretical curves, obtained numerically, for dX/d Tin 1 , 2  and 3 dimensions 
are shown in figure 3. Here we assume that 1 and gOeff will be constant as a function of 
dimension. In the inset of figure 3 we also compare our theoretical results to X-measure- 
mentsonKo 0 3 M ~ 0 3  (ID) [5], K3Cu8S6(2D) [8] andCuVZSL(3D) [9] withgoodagreement. 

We observe that (7) implies a diverging dX/d T, ever-present lattice imperfections in 
realistic systems will provide a cut-off to the ionic correlation length leading to a non- 
diverging specific heat and thus to a cusp in dX/dT. The effects of disorder can be 
included explicitly in our calculations. It is well known that impurities destroy long- 
range order in Peierls systems of physical interest [lo] ; the correlation length will remain 
finite and will saturate to avalue determined by the impurity concentration and potential. 
For low impurity levels there will be a crossover temperature T' corresponding to the 
formation of 'local' gaps [11]; in order to determine x near T" in a 'dirty' Peierls system 
we have modelled K , , ~ ,  the inverse ionic correlation length in the presence of impurities, 
by an expression (shown in figure 1) motivated by McMillan's leading-order treatment 
of impurity fluctuations [ll] 

where N = t = ( T  - T*) /T" ,  d is the system dimension, x is the impurity con- 
centration and A is an input length scale determined by the impurity potential. We can 

K,,p - (i/go){( - t )  + [( - t )2  + N ~ ] ~ ~ ~ } ~ / ~  (8) 
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incorporate (8) into our calculation of x ,  and in the inset of figure 2 we show 
dX/d T versus T for K0.30M003, both theory and experiment [5] ,  for varying impurity 
concentrations. Here we take A to be roughly a lattice spacing (A - 4.5 A); this cor- 
responds to a weak impurity potential. We assume that Eoeff/l = 1.2 remains constant 
for low levels; we then find that the coherence length go decreases with increasing 
impurityconcentration, asexpected ( x  = 0, goeff/Eo - 2 . 1 ; ~  = 0.004, goeff/Eo - 2 . 4 ; ~  = 

In conclusion we have presented a theory for the DC magnetic susceptibility at a 
Peierls transition that includes Gaussian critical fluctuations in all three dimensions. We 
have incorporated the Fisher-Langer argument, borrowed from magnetism, into our 
calculation and show that the short-range order parameter fluctuations and growth 
provide the dominant contribution tox  near T,. In particular dX/d Twill be proportional 
to the lattice specific heat and therefore will have a cusp for physically realistic systems 
at T - T,. Similar reasoning can be applied to the nuclear spin relaxation rate l/T1 and 
the thermoelectric power Q. Comparison with experimental results from quasi-one- 
dimensional blue bronze, with varying impurity concentrations, yields favourable agree- 
ment. Good agreement with experiment is also found for K3Cu8S, ( 2 ~ )  [8] and CuV2S4 
( 3 ~ )  [9]. We would like to encourage more accurate measurements of dX/d T and c, on 
the same Peierls systems; this would provide a good test for the theory. 

Naturally there remain many open questions. Future projects include a study of 
resistivity where backscattering effects must be included. Though the present theory 
does extend to several higher-dimensional compounds, the dichalcogenide 2H-TaSe2 
certainly provides a mystery-its x near T, has a pronounced discontinuity [12] and thus 
does not have an energy-like appearance. It has been suggested that this anomalous 
behaviour in x near the transition may be due to specific band-structure features and/or 
electron-electron interactions [ 131, neither of which has been addressed here. Finally, 
it would be interesting to investigate the dynamics of these Peierls systems a little bit 
further from T,, and in particular to learn how the quasi-static fluctuations become 
phonons at higher temperatures. 

0.01, goe,/Eo - 2.6). 
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